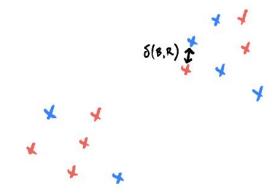
DSC 40B Lecture 28: MSTs and Clustering

MSTs and Clustering

Clustering: Find Groups Goal: identify the groups in data. Example:

Clustering, Formalized

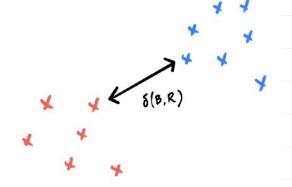
- We frame as an **optimization** problem.
- **Given**: *n* data points.
- **Goal**: assign color to each point (red or blue) to maximize the distance between the *closest* pair of red and blue points.



Bad Clustering

Clustering, Formalized

- We frame as an **optimization** problem.
- **Given**: *n* data points.
- **Goal**: assign color to each point (red or blue) to maximize the distance between the *closest* pair of red and blue points.

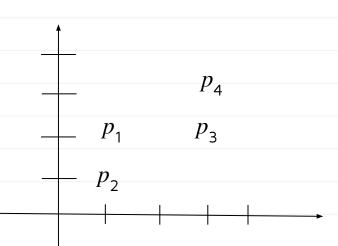


Good Clustering

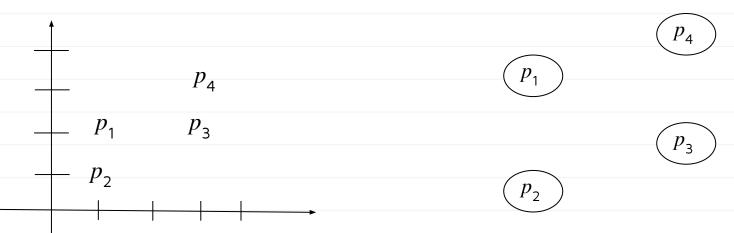
Brute Force Solution

- Try all possible assignments; return best.
- If there are n data points, there are $\Theta(2^n)$ assignments.
- Exponential time; very slow.
 - Practical only for ~ 50 data points.
- Instead, we will turn it into a graph problem.

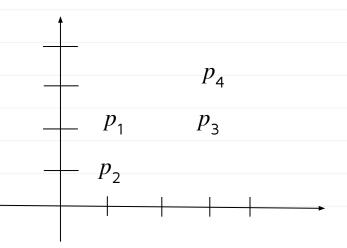
- Given n data points, p_1, p_2, \dots, p_n , create complete graph with $= \{p_1, \dots, p_n\}.$
- Set weight of edge $(p_{i}, p_{j}) = dist(p_{i}, p_{j})$.
- The result is a weighted, undirected distance graph.

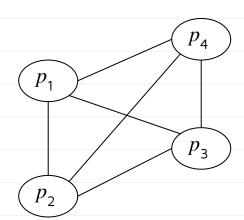


- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $=\{p_1,\ldots,p_n\}.$
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.

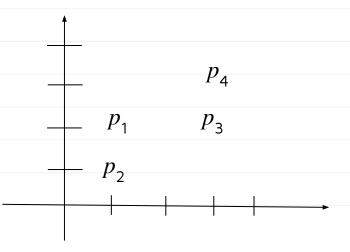


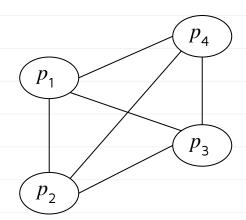
- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $=\{p_1, \ldots, p_n\}$.
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.



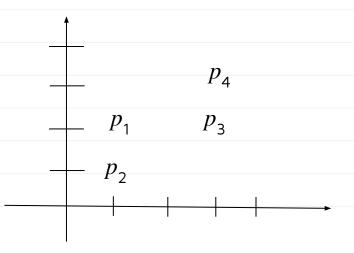


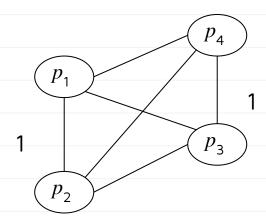
- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $=\{p_1,\ldots,p_n\}.$
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.



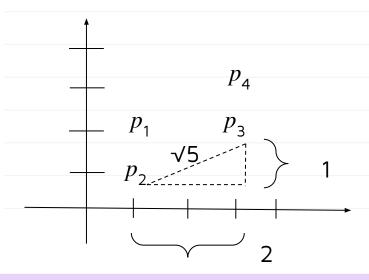


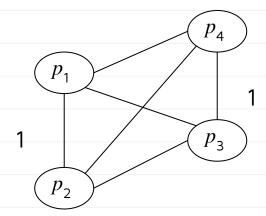
- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $=\{p_1,\ldots,p_n\}.$
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.



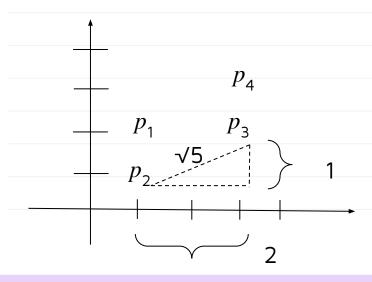


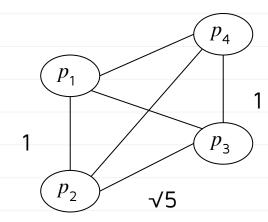
- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $= \{p_1, \ldots, p_n\}$.
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.



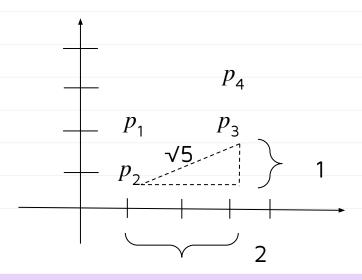


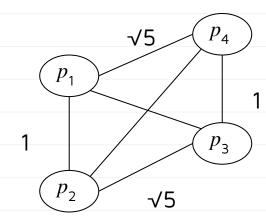
- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $=\{p_1,\ldots,p_n\}.$
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.



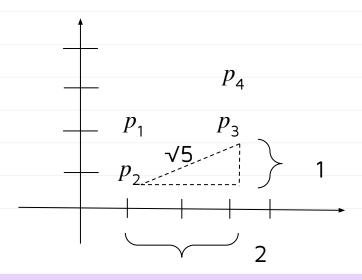


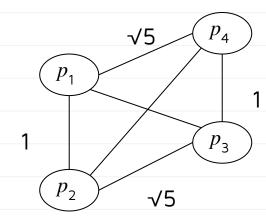
- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $=\{p_1,\ldots,p_n\}.$
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.





- Given n data points, p_1 , p_2 , ..., p_n , create complete graph with $= \{p_1, \ldots, p_n\}$.
- Set weight of edge $(p_i, p_j) = \text{dist}(p_i, p_j)$.
- The result is a weighted, undirected distance graph.





You can finish the rest

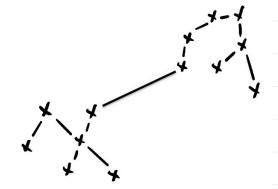
Main Idea

We can always think of a set of points in a (metric) space as a weighted distance graph.

This is a **very important idea**, because it allows us to use our graph algorithms!

Clustering with MSTs

- Given n data points and a number of clusters, k:
 - \circ Create distance graph G.
 - \circ Run Kruskal's Algorithm on G until there are only k components.



- The resulting connected components are the clusters.
- This is known as single-linkage clustering.

Clustering with MSTs

- Given n data points and a number of clusters, k:
 - \circ Create distance graph G.
 - \circ Run Kruskal's Algorithm on G until there are only k components.

- The resulting connected components are the clusters.
- This is known as single-linkage clustering.

Single-Linkage Clustering

- Time complexity of single-linkage is determined by Kruskal's Algorithm: $\Theta(E \log E)$.
- Since distance graph is complete, $E = \Theta(V^2)$, and so $\Theta(E \log E) = \Theta(V^2 \log V) = \Theta(n^2 \log n)$
- Practically, can cluster ~ 10, 000 points.

Summary

- We started the quarter with a **brute force solution**.
 - \circ Took $\Theta(2^n)$ time, only feasible for a few dozen points.
- We've now reframed the problem using graph theory.
 - Now only $\Theta(n^2 \log n)$ time!
 - Feasible for tens of thousands of points.

Why Algorithms?

- Data scientists use computers as tools.
- But solving a problem isn't just about coding it up.
- You need to know how to analyze your code and use the right algorithms and data structures to make your solution efficient.

Thank you!

Do you have any questions?

CampusWire!